
Scheduling Algorithms Report

Meet Vyas

April 2023

1 Problem Definition

Create an efficient University Schedule based on the Expression of Interest Data given by the university.

1.1 Introduction

• University course scheduling is the problem of assigning classes to specific times and rooms, such that there are no
conflicts and all courses are accommodated in the most efficient manner possible.

• This problem is inherently difficult and has been shown to be NP-Hard.

• In this paper, I propose a novel approach to solve the university course scheduling problem in polynomial time.

1.2 Problem Statement

• The university course scheduling problem is said to be NP-Hard as it falls under the category of scheduling problems.

• Solving a scheduling problem means to find an optimal schedule for a set of activities, subject to constraints.

• The most common scheduling problems are job scheduling, machine scheduling, and project scheduling.

• The university course scheduling problem is a type of job scheduling problem, where each course is a job that needs
to be scheduled in a specific time and room.

• The problem is further complicated by the fact that there are multiple courses that need to be scheduled simulta-
neously, and there are constraints on the availability of rooms and instructors which leads to course clashing and
unavailability of several courses to the students.

• The university course scheduling problem is NP-Hard, as it can be reduced to the classic NP-Hard problem of graph
coloring.

• Given a graph G = (V,E), the graph coloring problem is to assign a color to each vertex in such a way that no
adjacent vertices share the same color.

• This problem is known to be NP-Hard, and can be reduced to the university course scheduling problem as follows:

1. Create a course for each vertex in the graph G.

2. If there is an edge between two vertices u and v in G, create a constraint that the courses corresponding to u
and v cannot be scheduled at the same time and room.

Thus, we have shown that the university course scheduling problem is NP-Hard, and requires an efficient algorithm
to solve it.

2 Reference Material

Scheduling Algorithms by Doctor Peter Brucker [1]

1

3 Method of Approach

• I started by reading the textbook’s first two chapters, which comprised the following information mentioned in the
below sub sections.

• The book talks about the fundamentals of scheduling algorithms which form the core of the subject operations
research. These algorithms help optimise resource utilisation, reduce costs, and improve efficiency in various fields
like manufacturing, transportation, healthcare, and telecommunication.

• The first chapter discusses the different use cases of scheduling algorithms in modern industries. These algorithms
are used to solve complex problems such as routing, sequencing and allocating resources in a time dependent matter.

• The chapter further discusses the different scheduling problems such as single machine scheduling, parallel machine
scheduling, flow shop scheduling, job shop scheduling, and open shop scheduling.

3.1 Scheduling Variables

[1]

Job Data

– The first chapter goes in depth about the classification of problems and the various variables used in the
process. The chapter starts with the explanation of Job Data which consists of a number ni of operations.
The job data with be denoted as Oi1, Oi2...Oini .

Processing Requirement

– If Ji contains ni = 1, then we identify Ji with Oi1 and denote the processing requirement as Pi. Furthermore
a release date ri, on which operation of Ji for the first time becomes available for processing can be specified.

– Associated with each operation Oij is a set of machines µij ⊆ {M1,M2...,Mm}
– Oij may be processed in any of the machines in µij .

– All µij are one element sets or all µij are equal to set of all machines.

– In the first case we have dedicated machines and in second case we have parallel machines.

– Machines are equipped with different tools which covers problems in Flexible Manufacturing, these machines
are known as multipurpose machines.

– One more possibility is that machines in the set µij are used simultaneously by Oij during the entire processing
period.

– Scheduling Problems like these are called multiprocessor task scheduling problems.

– The last data consists of a cost function fi(t) which measures the cost of completing Ji at time t. A due date
di and a weight wi can be used in defining fi.

– In general, all data pi, pij , ri, di, wi are assumed to be integer.

– A schedule is feasible if no two time intervals overlap on the same machine, if no two time intervals allocated
to the same job overlap, and if, in addition, it meets a number of problem-specific characteristics.

– A schedule is optimal if it minimizes a given optimality criterion(γ).

– Classes if scheduling problems are specified in terms of a three field classification α|β|γ where α specifies the
machine environment, β specifies Job Characteristics.

Job Characteristics (β)

– They are a set called β containing at most six elements β1, β2, β3, β4, β5 and β6.

– β1 indicates whether preemption(or job splitting) is allowed. Preemption means that processing may be
interrupted and resumed at a later time, even on another machine. A job or operation may be interrupted
several times. If allowed we set β1 = pmtn. Otherwise β1 does not appear in β.

– β2 describes precedence relations between jobs. These precedence relations may be represented by an acyclic
directed graph (G = V,A) where V = {1, 2, 3..., n} corresponds with jobs, and (i, k) ∈ A if Ji must be completed
before Jk starts. In this case we write Ji → Jk.

2

– If G is an arbitrary acyclic directed graph we set β2 = prec. Sometimes we will consider scheduling problems
with restricted precedences given by chains, intree, outtree, and sp-graph. If β2 = intree, then G is a rooted
tree with an outdegree for each vertex of at the most one. If β2 = outtree, then G is a rooted tree with an
indegree for each vertex of at most one. Thus in an intree all arcs are directed towards a root and in an outtree
all arcs are directed towards away from a root. If β2 = tree, then G is either an intree or an outtree. A set of
chains is a tree in which the outdegree and indegree for each vertex is at the most one. If β2 = chains, then
G is a set of chains.

– Series-parallel graphs are closely related to trees.

– A graph is called series-parallel if it can be built by means of the following rules:

∗ Base Graph: Any graph consisting of a single vertex is series-parallel. Let Gi = (Vi, Ai) be series-parallel
(i = 1, 2).

∗ Parallel composition: The graph G = (V 1 ∪ V 2, A1 ∪ A2) formed from G1 and G2 by joining the vertex
sets and arc sets is series parallel.

∗ Series composition. The graph G = (V 1 ∪ V 2, A1 ∪A2 ∪ T1× S2)formed from G1 and G2 by joining the
vertex sets and arc sets and adding all arcs (t, s) where t belongs to the set T1 of sinks of G1 (i.e. the set
of vertices without successors) and s belongs to the set S2 of sources of G2 (i.e. the set of vertices without
predecessors) is series parallel.

– We set β2 = sp-graph if G is series parallel. If there are no precedence constraints, then β2 does not appear
in β.

– If β3 = ri, then release dates may be specified for each job. If ri = 0 for all jobs, then beta3 does not appear
in beta.

– β4 specifies restrictions on the processing times or on the number of operations. If beta4 is equal to pi = 1(pij =
1), then each job (operation) has a unit processing requirement. Similarly, we may write pi = p(pij = p).
Occasionally, the beta4 field contains additional characteristics with an obvious interpretation such as pi ∈
{1, 2} or di = d.

– If β5 = d1, then a deadline di, is specified for each job Ji, i.e job Ji must not finish later than time di.

– In some scheduling applications, sets of jobs must be grouped into batches.

– A batch is a set of jobs which must be processed jointly on a machine. The finishing time of all jobs in a batch
is defined as equal to the finishing time of the batch.

– A batch may consist of a single job up to n jobs. There is a set-up time s for each batch.

– We assume that this set-up time is the same for all batches and sequence independent.

– A batching problem is to group the jobs into batches and to schedule these batches. There are two types of
batching problems, denoted by p-batching problems, and s-batching problems.

– For p-batching problems (s batching-problems) the length of a batch is equal to the maximum(sum) of pro-
cessing times of all jobs in the batch.

– β6 = p-batch or β6 = s-batch indicates a batching problem. Otherwise β6 does not appear in β.

Machine Environment

– The machine environment is characterized by a string α = α1α2 of two parameters. Possible values of α1 are
◦, P,Q,R, PMPM,QMPM,G,X,O, J, F .

– If α1 ∈ ◦, P,Q,R, PMPM,QMPM , where ◦ denotes the empty symbol (thus, α = α2 if α1 = ◦), then each
Ji consists of a single operation.

– If α1 = ◦, each job must be processed on a specified dedicated machine.

– If α1 ∈ {P,Q,R}, then we have parallel machines, i.e. each job can be processed on each of the machines
M1, . . . ,Mm. If α1 = P , then there are identical parallel machines. Thus, for the processing time pij of job
Ji on Mj we have pij = pi for all machines Mj . If α1 = Q, then there are uniform parallel machines, i.e.
pij = pi/sj where sj is the speed of machine Mj . Finally, if α1 = R, then there are unrelated parallel machines,
i.e. pij = pi/sij for job-dependent speeds sij of Mj .

– If α1 = PMPM and α1 = QMPM , then we have multi-purpose machines with identical and uniform speeds,
respectively.

3

– If α1 ∈ {G,X,O, J, F}, we have a multi-operation model, i.e. associated with each job Ji there is a set of
operations Oi1, . . . , Oini

. The machines are dedicated, i.e. all µij are one element sets. Furthermore, there are
precedence relations between arbitrary operations. This general model is called a general shop. We indicate
the general shop by setting α1 = G. Job shops, flow shops, open shops, and mixed shops are special cases of
the general shop. In a job shop, indicated by α1 = J , we have special precedence relations of the form

Oi1 → Oi2 → Oi3 → · · · → Oini
for i = 1, . . . , n.

Furthermore, we generally assume that µij ̸= µi,j+1 for j = 1, . . . , ni − 1. We call a job shop in which
µij = µi,j+1 is possible a job shop with machine repetition.

– The flow shop, indicated by α1 = F , is a special case of the job-shop in which ni = m for i = 1, . . . , n and
µij = {Mj} for each i = 1, . . . , n and µij& = Mj for each i = 1, . . . , n and j = 1, . . . , m.

– The open shop, denoted by α1 = O, is defined as the flow shop, with the exception that there are no precedence
relations between the operations. A mixed shop, indicated by α1 = X, is a combination of a job shop and an
open shop.

– A permutation flow shop is a flow shop in which jobs are processed in the same order on each machine. Figure
1.2 shows a feasible schedule for a permutation flow shop. If we have a job shop problem, we may set β4 equal
to ni ≤ 2. In this case, all jobs have at most two operations. If α2 is equal to a positive integer 1, 2, . . ., then
α2 denotes the number of machines. If α2 = k, then k is an arbitrary but fixed number of machines. If the
number of machines is arbitrary, we set α2 = ◦

4 Using Gephi for Graph Visualisation

In this report, I present the process and results of visualizing a university course schedule using the Gephi software.
Gephi is an open-source network analysis and visualization software package that allows users to explore and analyze
complex networks. I used the Fruchterman-Reingold algorithm for graph layout, which is a force-directed algorithm
that simulates a physical system of nodes connected by edges.

4.1 Data Preparation

– I obtained the course schedule data in the form of an edge list by running a python code which creates a source
target list from the Expression of Interest Data for the Winter Semester 2022, which is a set of connections
between nodes.

– Each node represents a course, and the edges represent the relationships between the courses.

– I prepared the data by importing it into Gephi using import spreadsheet and adjusting the settings for visu-
alization.

4.2 Visualization with Gephi

– Gephi provides a user-friendly interface for creating and manipulating graphs along with various statistical
tools. I used the Fruchterman-Reingold algorithm to layout the nodes and edges. This algorithm simulates a
physical system of nodes connected by edges, where nodes repel each other and edges attract the nodes they
connect.

– I set the gravity parameter to 10000, which controls the strength of the attraction between the edges and nodes.
This high value creates a tight layout with closely connected nodes, which helps to highlight the relationships
between courses.

4.3 Results

– The resulting graph provided a visual representation of the course schedule that allows for easy identification of
the relationships between courses and their clustering. I observed that courses in related fields tend to cluster
together, indicating that they have similar requirements or are part of the same program. I also observed that
some courses act as bridges between different clusters, indicating that they may be prerequisites for courses in
multiple fields.

4

– Overall, the graph helped in understanding the course schedule and identifying potential areas for improvement
or optimization as the graph was very clustered. I was then given the advice to work with Graph Colouring
due the nature of the graph. The Gephi software and Fruchterman-Reingold algorithm were essential tools in
creating this visualization, moving further into the project and analysis.

Figure 1: Gephi Graph

5 NetworkX

NetworkX is a Python package used for creating, manipulating, and analyzing complex networks and graphs.

5.1 NetworkX as a Graph Library in Python

– NetworkX is a library in Python that provides tools for creating, manipulating, and analyzing complex networks
and graphs.

– It is built on top of the numerical library NumPy and offers a high level of functionality for constructing
graphs, manipulating graph structures, and analyzing network properties.

– The library provides an interface for handling graphs and has support for directed, undirected, weighted, and
unweighted graphs.

5

5.2 Partitioning Graphs into Communities

– Graph partitioning is a fundamental problem in graph theory that involves dividing a graph into smaller
subgraphs or communities based on some criteria. NetworkX provides several algorithms for partitioning
graphs into communities, including the Louvain method and the Girvan-Newman method out of which I have
used the Louvian method.

– The Louvain method is a hierarchical clustering algorithm that optimizes modularity, a measure of the quality
of the partitioning. It is used for detecting communities in large networks and was used to partition the
university edge list graph into communities.

Figure 2: Graph Partitioned with Louvain Communities

5.3 Graph Colouring

– Graph coloring is another fundamental problem in graph theory that involves assigning colors to the vertices
of a graph such that no two adjacent vertices have the same color. NetworkX provides a range of algorithms
for graph coloring, where I have used greedy coloring,

– The greedy coloring algorithm is a simple algorithm that starts with an empty color set and assigns colors to
the vertices one by one, choosing the color that has been used the least by its neighbors. This algorithm has
a time complexity of O(n2) where n is the number of vertices in the graph.

– Graph coloring is a useful tool for a variety of applications, such as scheduling, map coloring, and frequency
assignment. In the context of university course scheduling, graph coloring can be used to assign time slots to
courses such that no two courses with overlapping schedules are assigned the same time slot. This can help
ensure that students can take all the courses they need without scheduling conflicts.

6 Solution

6.1 Polynomial Time Solution

The solution I reached is a novel approach to solve the university course scheduling in polynomial time. The
approach involved using community detection algorithms to partition the graph into subgraphs, and then using
graph coloring algorithms to assign courses to specific time and room slots.

Specifically, I used the Louvain community detection algorithm to partition the graph into subgraphs. The Louvain
algorithm is a popular community detection algorithm that optimizes modularity, which measures the degree to

6

Figure 3: Coloured graph without partitioning

Figure 4: Coloured graph after partitioning

which a graph can be partitioned into non-overlapping communities. The algorithm is iterative, and involves
merging and splitting communities to maximize modularity.

Once the graph has been partitioned into subgraphs, I used the greedy coloring algorithm to assign courses to
specific time and room slots. The greedy coloring algorithm is a simple and efficient algorithm that assigns colors
to vertices in a sequential manner. At each step, the algorithm assigns the lowest available color to the current
vertex, and then updates the set of available colors for the adjacent vertices.

The advantage of our approach is that it can solve the university course scheduling problem in polynomial time,
which reaches the goal of the project. Furthermore, our approach is scalable and can handle large graphs with
thousands of vertices.

7

7 Google OR Tools

– Google OR Tools was another approach used to solve the university scheduling problem.

– The Google OR Tools is a suite created by google to solve complex problems in combinatorial optimization
problems.

– For the problem of university course scheduling, we can model the problem as a constraint satisfaction problem
and use the package and it’s built in solvers to solve the problem. The OR-Tools solver is based on the CP-SAT
algorithm, which is a hybrid of constraint programming and linear programming.

– Using the nurse scheduling problem of the Employee Scheduling section as a reference for solving the problem,
attempts were made to create a viable schedule using different objective functions.

– The different objective functions include maximizing the students assigned to courses, which would be the
scenario where the maximum enrollment or maximum utilization of available course capacity is done to reduce
clashes between courses. Another objective function tried out was to reduce the number of course clashes
between students.

– The approach didn’t work for the time being as the CPSAT Solver took too much computation time and
resources and a clear schedule could not be reached that minimized the number of course clashes.

8 Exam Scheduling

Exam Scheduling can also be done using the same way as course scheduling only the parameters for the days and
slots need to be changed, as exams can be scheduled to a maximum of three per day for fairness.

9 Solution variations changing the methods and resolution of Louvian
Methods in Graph Partitioning

– Without partitioning the graph a schedule was created which did not have any clashes in it, which is a proof
of concept that the graph colouring algorithm works and a viable schedule is obtained.

– With partitioning, we create communities by modularity, in which small communities are found by optimizing
modularity locally on all nodes. Then, graph coloring is applied on each community individual, thus balancing
a trade-off in minimizing clashes and time slots.

– The Louvain community detection algorithm is a popular method for identifying communities or clusters within
a network. The algorithm aims to maximize the modularity of the network, which is a measure of the density
of connections within communities compared to the expected density of connections in a random network.

– The modularity of a network is defined as:

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj), (1)

where Aij is the weight of the edge between nodes i and j, ki and kj are the sums of the weights of the edges
connected to nodes i and j, respectively, m is the total weight of the edges in the network, ci is the community
to which node i belongs, and δ(ci, cj) is the Kronecker delta function, which equals 1 if nodes i and j belong
to the same community and 0 otherwise.

– The Louvain algorithm works by iteratively optimizing modularity at the local level. In the first phase, each
node is assigned to its own community, and the algorithm tries to improve modularity by moving nodes between
communities. This is done by considering the change in modularity that would result from moving a node
to its neighbor’s community, and selecting the move that results in the largest increase in modularity. This
process is repeated until no further improvement in modularity can be achieved.

– In the second phase, the communities identified in the first phase are treated as nodes in a new network, and
the same process is repeated to identify communities at a larger scale.

– On a node level, this algorithm thus maximizes the edge weights between this node and the community it
belongs to, and minimizes the edge weights crossing into other communities. On a global level, the algorithm
maximizes intra-community (within community) edge weights, while minimizing the inter-community (between
communities) edge crossing weights.

8

– This allows us to find communities where there will be a higher tendency of clashes, whereas between com-
munities, there will be a lower level of clashes for scheduling. We can then color all of these communities
independently, to achieve a balanced trade-off between minimizing clashes and also minimizing node colors
required (which are the required time slots).

9.1 Psuedocode

1 Read in edge list from a CSV file named ’test.csv’

2 Create an empty list named ’edgelist ’

3 Loop through each row in the CSV file using csv.reader

4 Append the first and second elements of each row to the ’edgelist ’ as a tuple

5 Measure the time taken for reading in the edge list using the ’timeit.default_timer ()’ function

and store the start time

6 Create a graph ’G’ from the ’edgelist ’ using networkx.Graph ()

7 Partition the graph ’G’ into communities using the Louvain algorithm with a resolution of 5

8 Store the partitioned communities in a variable named ’communities ’

9 Print the ’communities ’

10 Measure the time taken for partitioning into communities using the ’timeit.default_timer ()’

function and subtract the start time to get the time taken , store it in ’partition_time ’

11 Create an empty list named ’schedules ’

12 For each community in the ’communities ’:

13 Create a subgraph of the community

14 Assign colors to each node in the subgraph using the greedy coloring algorithm with ’

saturation_largest_first ’ strategy

15 Store each course and its corresponding time slot in a dictionary ’schedule ’

16 Append each ’schedule ’ to the ’schedules ’

17 Measure the time taken for assigning time slots using the ’timeit.default_timer ()’ function and

subtract the ’partition_time ’ to get the time taken , store it in ’assignment_time ’

18 Create an empty pandas DataFrame named ’schedule_matrix ’ with columns labeled ’Day 1’ to ’Day 5’

19 Create an empty set named ’scheduled_courses ’

20 Measure the time taken for creating the ’schedule_matrix ’ using the ’timeit.default_timer ()’

function and store the start time

21 For each time slot in the range of 1 to 15:

22 Calculate the day number of the time slot using the formula (slot - 1) % 5 + 1

23 Create an empty row in the ’schedule_matrix ’ for the current time slot

24 For each community in ’schedules ’:

25 Get all courses scheduled for the current time slot and the current community

26 For each course , if it has not been scheduled before , add it to the current row of the ’

schedule_matrix ’ for the current day

27 Add all scheduled courses for the current time slot to the ’scheduled_courses ’ set

28 Measure the time taken for populating the ’schedule_matrix ’ using the ’timeit.default_timer ()’

function and subtract the start time to get the time taken , store it in ’schedule_matrix_time ’

29 Save the ’schedule_matrix ’ to an Excel file named ’university_schedule1.xlsx’

30 Measure the time taken for saving the ’schedule_matrix ’ to Excel using the ’timeit.default_timer ()

’ function and subtract the ’schedule_matrix_time ’ to get the time taken , store it in ’

saving_time ’

31 Calculate the total time taken by adding ’partition_time ’, ’assignment_time ’, ’

schedule_matrix_time ’, and ’saving_time ’, and store it in ’total_time ’

32 Print the time taken for each step and the total time taken using formatted strings.

10 Future Prospects

Currently the schedule created only schedules all the courses once per 15 slots for the course scheduling and 3 exams
per day for 7 days for exam scheduling. A lot of work can be done to further enhance the understanding of the
course and reach a truly novel and optimum solution for the University Course Scheduling Problem.

10.1 Changing the current approach

– Different algorithms for graph colouring can be used to get the best result for the graph colouring problem. As
the graph coloring problem is known to be NP-complete there is no known algorithm which, for every graph,
will optimally color the nodes of the graph in a time bounded by a polynomial in the number of nodes.

– Many graph coloring algorithm such as the Saturation algorithm, the Recursive Largest First algorithm,
Simulated Annealing algorithm, Greedy algorithm, are NP complete. I have used the greedy algorithm in the

9

solution, but other algorithms can be tested such as the largest first or degree of saturation problem. or a new
algorithm can be developed which gives a better solution to the problem.

– Along with graph colouring, different algorithms can be applied to the same problem. In my solution I have
used Louvian communities as well as greedy modularity communities which are both NP complete algorithms
and thus we have to use a heuristic approach for the same.Here we have set the resolution for both the
algorithms to 5 which results in smaller communities.

– Other approaches to the problem such as genetic algorithms and simulated annealing can also be tried out to
better the chances of an optimum solution for the university schedule problem.

10.2 Updating and advancements in the current approach

– A new edge list can be created with the weights of the nodes which would help in better allocation of the
courses to different communities and colouring algorithms.

– Different courses with different credits can be allocated in a schedule in such a way that two credit courses
have a certain time of running and certain slots they can be run in. We can differentiate these constraints in
two categories as hard constraints and soft constraints. [2]

– Lab courses and courses with different credits can have different constraints which need to be satisfied and
thus will fall into the category of hard constraints.

– Faculty time preferences, room allocation, batch capacity preferences don’t strictly need to be satisfied and
thus will fall under the category of soft constraints.

– So the idea can be formalized further and a better solution to the problem can be obtained.

11 Comparision of Distance/Similarity Based Approaches

Methodology No. of Clashes

node2vec 1450
LouvainNE 3675
RandomProjection 2810
Singular Value Decomposition 4665
Generalised Singular Value Decomposition 2710
Spectral 4323
Principal Component Analysis 5967
LouvainEmbedding 2931
Louvain Recursive Patition Tree 7170

Note: all embeddings with dimensionality of 5 and L1 loss.
No. of simultaneous slots/rooms fixed to 10.

Table 1: Number of clashes for different embedding approaches

12 Conclusion

Thus I reached the goal of creating a simple schedule with a scheduling algorithm and I understood the implemen-
tation and methods of the major algorithms used for course scheduling.

References

[1] Brucker, P. (2007). Scheduling algorithms. Springer.

[2] Ganguli, R., & Roy, S. (2017). A study on course timetable scheduling using graph coloring approach. International
Journal of Computational and Applied Mathematics, 12 (2), 469-485.

10

[3] San, S., Ong, K., See, J., & Abdullah, L. (2012). A university timetabling system based on graph colouring and
constraint manipulation. Applied Mathematical Sciences, 6(38), 1883-1892.

[4] Kwok, J., & Leung, H. (2007). Graph coloring for class scheduling. ACM Sigada Ada Letters, 27(3), 27-33.

[5] Hacıoğlu, Y., & Yilmaz, I. (2008). Course timetabling by graph coloring. The Engineering and Architecture Faculty
of Gazi University Journal, 23(4), 791-799.

[6] Islam, M. N., Giri, M. A. S., & Farhana, S. (2017). Comparative analysis of graph coloring algorithms for scheduling
problem. International Journal of Computer Applications in Management, 12(2), 25-33.

[7] Ibraheem, A., & Salim, N. H. (2017). Solving the class scheduling problem using graph coloring technique. Interna-
tional Journal of Applied Engineering Research, 12(21), 10499-10510.

[8] Google Optimization. (n.d.). Retrieved April 24, 2023, from https://developers.google.com/optimization

[9] Hagberg, Aric, Swart, Pieter, & Chultunbaev, Anton. (2021). NetworkX Documentation. Retrieved April 24, 2023,
from https://networkx.org/documentation/stable/.

[10] Louvain method. (2023, March 22). In Wikipedia. Retrieved April 24, 2023, from
https://en.wikipedia.org/wiki/Louvainmethod Algorithm

11

https://networkx.org/documentation/stable/

	Problem Definition
	Introduction
	Problem Statement

	Reference Material
	Method of Approach
	Scheduling Variables

	Using Gephi for Graph Visualisation
	Data Preparation
	Visualization with Gephi
	Results

	NetworkX
	NetworkX as a Graph Library in Python
	Partitioning Graphs into Communities
	Graph Colouring

	Solution
	Polynomial Time Solution

	Google OR Tools
	Exam Scheduling
	Solution variations changing the methods and resolution of Louvian Methods in Graph Partitioning
	Psuedocode

	Future Prospects
	Changing the current approach
	Updating and advancements in the current approach

	Comparision of Distance/Similarity Based Approaches
	Conclusion

